乐文小说网

手机浏览器扫描二维码访问

科普向 关于希尔伯特空间(第1页)

(小燕文学WwW.XiaoYanwenXue.CoM)

这里是道长的科普频道!

正文里,我们的主角王崎第二次使用的金手指,是来自地球的大数学家大卫·希尔伯特的希尔伯特空间。水印广告测试水印广告测试

由于不想再正文水字数,所以贫道将这个数学方法的科普贴在这里!有兴趣的书友不妨进来一看哦~

阿尔伯特空间并不是确实存在的,而是抽象的、用于演算的工具,即相空间。

每个读过中学数学的朋友应该都建立过二维的笛卡儿平面:画一条x轴和一条与其垂直的y轴,并加上箭头和刻度【也就是通常所说的平面直角坐标系】。在这样一个平面系统里,每一个点都可以用一个包含两个变量的坐标(x,y)来表示,例如(1,2),或者(4.3,5.4),这两个数字分别表示该点在x轴和y轴上的投影。当然,并不一定要使用直角坐标系统,也可以用极坐标或者其他坐标系统来描述一个点,但不管怎样,对于2维平面来说,用两个数字就可以唯一地指明一个点了。如果要描述三维空间中的一个点,那么我们的坐标里就要有3个数字,比如(1,2,3),这3个数字分别代表该点在3个互相垂直的维度方向的投影。

让我们扩展一下思维:假如有一个四维空间中的点,我们又应该如何去描述它呢?显然我们要使用含有4个变量的坐标,比如(1,2,3,4),如果我们用的是直角坐标系统,那么这4个数字便代表该点在4个互相垂直的维度方向的投影,推广到n维,情况也是一样。诸位大可不必费神在脑海中努力构想4维或者11维空间是如何在4个乃至11个方向上都互相垂直的,事实上这只是我们在数学上构造的一个假想系统而已。

我们所关心的是:n维空间中的一个点可以用n个变量来唯一描述,而反过来,n个变量也可以用一个n维空间中的点来涵盖。

现在让我们回到物理世界,我们如何去描述一个普通的粒子呢?在每一个时刻t,它应该具有一个确定的位置坐标(q1,q2,q3),还具有一个确定的动量p。动量也就是速度乘以质量,是一个矢量,在每个维度方向都有分量,所以要描述动量p还得用3个数字:p1,p2和p3,分别表示它在3个方向上的速度。总而言之,要完全描述一个物理质点在t时刻的状态,我们一共要用到6个变量。而我们在前面已经看到了,这6个变量可以用6维空间中的一个点来概括,所以用6维空间中的一个点,我们可以描述1个普通物理粒子的经典行为。我们这个存心构造出来的高维空间就是系统的相空间。

假如一个系统由两个粒子组成,那么在每个时刻t这个系统则必须由12个变量来描述了。但同样,我们可以用12维空间中的一个点来代替它。对于一些宏观物体,比如一只猫,它所包含的粒子可就太多了,假设有n个吧,不过这不是一个本质问题,我们仍然可以用一个6n维相空间中的质点来描述它。这样一来,一只猫在任意一段时期内的活动其实都可以等价为6n空间中一个点的运动(假定组成猫的粒子数目不变)。我们这样做并不是吃饱了饭太闲的缘故,而是因为在数学上,描述一个点的运动,哪怕是6n维空间中的一个点,也要比描述普通空间中的一只猫来得方便。在经典物理中,对于这样一个代表了整个系统的相空间中的点,我们可以用所谓的哈密顿方程去描述,并得出许多有益的结论。

——部分选自曹天元《量子物理史话》

(大雁文学WwW.XiaoYanWenXue.CoM)

美女总裁老婆  我叫布里茨  网游之零纪元  权柄大明  道梦之轮回  美女教师的鬼医高手  与女精灵的地球生活  霸隋  醉卧九天  鼎天武帝  重生之天生我才  纸醉江山  黑暗剑圣  兽王三国  神捕乱宋  玄玑图  死亡神座  超级特警综合系统  舞吧,傀儡  苍天霸业  

热门小说推荐
夜店小生

夜店小生

陈枫是一个倒霉的大学毕业生。大学刚刚毕业,没有找到工作不说,家里老爸还出车祸被车撞了,肇事司机没钱,虽然人已经被拘留了,但我爸现在还躺在医院里,急需钱救治,为了钱我下海了。...

重生2003

重生2003

一个写网络小说的家伙,回到2003年,一切重新开始。且看这个小人物能翻起怎样的浪花!...

她从骨中来

她从骨中来

午夜时分,夜栈之门为你打开,你不敢走的路她会陪你走...

救命稻草儿

救命稻草儿

书海阁小说网免费提供作者星园的经典小说救命稻草儿最新章节全文阅读服务本站更新及时无弹窗广告欢迎光临wwwshgtw观看小说一个会搞笑的女子,女主梁红玉怀抱着大志与权宦缠斗在了一起,咱们的男主韩世忠搅在中间,一个陷阱一盆水,一路坎坷负重行。当朝邪恶盛行,乃至流行,只花石纲就残害了许多人,男女主角在这张谁都在其中的大网之下,却用勾栏搞笑的态度与邪恶狠狠的斗了起来,话说是斗了个你死我活,不共戴天,不死不活,死了拉倒。...

永生才能不灭

永生才能不灭

以全族之力,转世重生,是否能破开这天地囚笼,带领本族重返万界巅峰,永生之后是否能够真的不死不灭,且看叶凡一步步走出不一样的道路。...

每日热搜小说推荐